57 research outputs found

    Network Resource Allocation via Stochastic Subgradient Descent: Convergence Rate

    Full text link
    This paper considers a general stochastic resource allocation problem that arises widely in wireless networks, cognitive radio, networks, smart-grid communications, and cross-layer design. The problem formulation involves expectations with respect to a collection of random variables with unknown distributions, representing exogenous quantities such as channel gain, user density, or spectrum occupancy. We consider the constant step-size stochastic dual subgradient descent (SDSD) method that has been widely used for online resource allocation in networks. The problem is solved in dual domain which results in a primal resource allocation subproblem at each time instant. The goal here is to characterize the non-asymptotic behavior of such stochastic resource allocations in an almost sure sense. It is well known that with a step size of ϵ\epsilon, {SDSD} converges to an O(ϵ)\mathcal{O}(\epsilon)-sized neighborhood of the optimum. In practice however, there exists a trade-off between the rate of convergence and the choice of ϵ\epsilon. This paper establishes a convergence rate result for the SDSD algorithm that precisely characterizes this trade-off. {Towards this end, a novel stochastic bound on the gap between the objective function and the optimum is developed. The asymptotic behavior of the stochastic term is characterized in an almost sure sense, thereby generalizing the existing results for the {stochastic subgradient} methods.} For the stochastic resource allocation problem at hand, the result explicates the rate with which the allocated resources become near-optimal. As an application, the power and user-allocation problem in device-to-device networks is formulated and solved using the {SDSD} algorithm. Further intuition on the rate results is obtained from the verification of the regularity conditions and accompanying simulation results

    Tracking Moving Agents via Inexact Online Gradient Descent Algorithm

    Full text link
    Multi-agent systems are being increasingly deployed in challenging environments for performing complex tasks such as multi-target tracking, search-and-rescue, and intrusion detection. Notwithstanding the computational limitations of individual robots, such systems rely on collaboration to sense and react to the environment. This paper formulates the generic target tracking problem as a time-varying optimization problem and puts forth an inexact online gradient descent method for solving it sequentially. The performance of the proposed algorithm is studied by characterizing its dynamic regret, a notion common to the online learning literature. Building upon the existing results, we provide improved regret rates that not only allow non-strongly convex costs but also explicating the role of the cumulative gradient error. Two distinct classes of problems are considered: one in which the objective function adheres to a quadratic growth condition, and another where the objective function is convex but the variable belongs to a compact domain. For both cases, results are developed while allowing the error to be either adversarial or arising from a white noise process. Further, the generality of the proposed framework is demonstrated by developing online variants of existing stochastic gradient algorithms and interpreting them as special cases of the proposed inexact gradient method. The efficacy of the proposed inexact gradient framework is established on a multi-agent multi-target tracking problem, while its flexibility is exemplified by generating online movie recommendations for Movielens 1010M dataset

    Asynchronous Decentralized Stochastic Optimization in Heterogeneous Networks

    Full text link
    We consider expected risk minimization in multi-agent systems comprised of distinct subsets of agents operating without a common time-scale. Each individual in the network is charged with minimizing the global objective function, which is an average of sum of the statistical average loss function of each agent in the network. Since agents are not assumed to observe data from identical distributions, the hypothesis that all agents seek a common action is violated, and thus the hypothesis upon which consensus constraints are formulated is violated. Thus, we consider nonlinear network proximity constraints which incentivize nearby nodes to make decisions which are close to one another but not necessarily coincide. Moreover, agents are not assumed to receive their sequentially arriving observations on a common time index, and thus seek to learn in an asynchronous manner. An asynchronous stochastic variant of the Arrow-Hurwicz saddle point method is proposed to solve this problem which operates by alternating primal stochastic descent steps and Lagrange multiplier updates which penalize the discrepancies between agents. This tool leads to an implementation that allows for each agent to operate asynchronously with local information only and message passing with neighbors. Our main result establishes that the proposed method yields convergence in expectation both in terms of the primal sub-optimality and constraint violation to radii of sizes O(T)\mathcal{O}(\sqrt{T}) and O(T3/4)\mathcal{O}(T^{3/4}), respectively. Empirical evaluation on an asynchronously operating wireless network that manages user channel interference through an adaptive communications pricing mechanism demonstrates that our theoretical results translates well to practice

    Online Learning over Dynamic Graphs via Distributed Proximal Gradient Algorithm

    Full text link
    We consider the problem of tracking the minimum of a time-varying convex optimization problem over a dynamic graph. Motivated by target tracking and parameter estimation problems in intermittently connected robotic and sensor networks, the goal is to design a distributed algorithm capable of handling non-differentiable regularization penalties. The proposed proximal online gradient descent algorithm is built to run in a fully decentralized manner and utilizes consensus updates over possibly disconnected graphs. The performance of the proposed algorithm is analyzed by developing bounds on its dynamic regret in terms of the cumulative path length of the time-varying optimum. It is shown that as compared to the centralized case, the dynamic regret incurred by the proposed algorithm over TT time slots is worse by a factor of log(T)\log(T) only, despite the disconnected and time-varying network topology. The empirical performance of the proposed algorithm is tested on the distributed dynamic sparse recovery problem, where it is shown to incur a dynamic regret that is close to that of the centralized algorithm

    Nonparametric Compositional Stochastic Optimization for Risk-Sensitive Kernel Learning

    Full text link
    In this work, we address optimization problems where the objective function is a nonlinear function of an expected value, i.e., compositional stochastic {strongly convex programs}. We consider the case where the decision variable is not vector-valued but instead belongs to a reproducing Kernel Hilbert Space (RKHS), motivated by risk-aware formulations of supervised learning and Markov Decision Processes defined over continuous spaces. We develop the first memory-efficient stochastic algorithm for this setting, which we call Compositional Online Learning with Kernels (COLK). COLK, at its core a two-time-scale stochastic approximation method, addresses the fact that (i) compositions of expected value problems cannot be addressed by classical stochastic gradient due to the presence of the inner expectation; and (ii) the RKHS-induced parameterization has complexity which is proportional to the iteration index which is mitigated through greedily constructed subspace projections. We establish almost sure convergence of COLK with attenuating step-sizes, and linear convergence in mean to a neighborhood with constant step-sizes, as well as the fact that its complexity is at-worst finite. The experiments with robust formulations of supervised learning demonstrate that COLK reliably converges, attains consistent performance across training runs, and thus overcomes overfitting

    Conservative Stochastic Optimization with Expectation Constraints

    Full text link
    This paper considers stochastic convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables, in addition to deterministic convex constraints on the domain of the variables. Although the setting is generic and arises in different machine learning applications, online and efficient approaches for solving such problems have not been widely studied. Since the underlying data distribution is unknown a priori, a closed-form solution is generally not available, and classical deterministic optimization paradigms are not applicable. State-of-the-art approaches, such as those using the saddle point framework, can ensure that the optimality gap as well as the constraint violation decay as \O\left(T^{-\frac{1}{2}}\right) where TT is the number of stochastic gradients. The domain constraints are assumed simple and handled via projection at every iteration. In this work, we propose a novel conservative stochastic optimization algorithm (CSOA) that achieves zero constraint violation and \O\left(T^{-\frac{1}{2}}\right) optimality gap. Further, the projection operation (for scenarios when calculating projection is expensive) in the proposed algorithm can be avoided by considering the conditional gradient or Frank-Wolfe (FW) variant of the algorithm. The state-of-the-art stochastic FW variants achieve an optimality gap of \O\left(T^{-\frac{1}{3}}\right) after TT iterations, though these algorithms have not been applied to problems with functional expectation constraints. In this work, we propose the FW-CSOA algorithm that is not only projection-free but also achieves zero constraint violation with \O\left(T^{-\frac{1}{4}}\right) decay of the optimality gap. The efficacy of the proposed algorithms is tested on two relevant problems: fair classification and structured matrix completion

    Escaping Saddle Points with the Successive Convex Approximation Algorithm

    Full text link
    Optimizing non-convex functions is of primary importance in the vast majority of machine learning algorithms. Even though many gradient descent based algorithms have been studied, successive convex approximation based algorithms have been recently empirically shown to converge faster. However, such successive convex approximation based algorithms can get stuck in a first-order stationary point. To avoid that, we propose an algorithm that perturbs the optimization variable slightly at the appropriate iteration. In addition to achieving the same convergence rate results as the non-perturbed version, we show that the proposed algorithm converges to a second order stationary point. Thus, the proposed algorithm escapes the saddle point efficiently and does not get stuck at the first order saddle points

    Adaptive Kernel Learning in Heterogeneous Networks

    Full text link
    We consider learning in decentralized heterogeneous networks: agents seek to minimize a convex functional that aggregates data across the network, while only having access to their local data streams. We focus on the case where agents seek to estimate a regression \emph{function} that belongs to a reproducing kernel Hilbert space (RKHS). To incentivize coordination while respecting network heterogeneity, we impose nonlinear proximity constraints. To solve the constrained stochastic program, we propose applying a functional variant of stochastic primal-dual (Arrow-Hurwicz) method which yields a decentralized algorithm. To handle the fact that agents' functions have complexity proportional to time (owing to the RKHS parameterization), we project the primal iterates onto subspaces greedily constructed from kernel evaluations of agents' local observations. The resulting scheme, dubbed Heterogeneous Adaptive Learning with Kernels (HALK), when used with constant step-sizes, yields O(T)\mathcal{O}(\sqrt{T}) attenuation in sub-optimality and exactly satisfies the constraints in the long run, which improves upon the state of the art rates for vector-valued problems

    Online Learning with Inexact Proximal Online Gradient Descent Algorithms

    Full text link
    We consider non-differentiable dynamic optimization problems such as those arising in robotics and subspace tracking. Given the computational constraints and the time-varying nature of the problem, a low-complexity algorithm is desirable, while the accuracy of the solution may only increase slowly over time. We put forth the proximal online gradient descent (OGD) algorithm for tracking the optimum of a composite objective function comprising of a differentiable loss function and a non-differentiable regularizer. An online learning framework is considered and the gradient of the loss function is allowed to be erroneous. Both, the gradient error as well as the dynamics of the function optimum or target are adversarial and the performance of the inexact proximal OGD is characterized in terms of its dynamic regret, expressed in terms of the cumulative error and path length of the target. The proposed inexact proximal OGD is generalized for application to large-scale problems where the loss function has a finite sum structure. In such cases, evaluation of the full gradient may not be viable and a variance reduced version is proposed that allows the component functions to be sub-sampled. The efficacy of the proposed algorithms is tested on the problem of formation control in robotics and on the dynamic foreground-background separation problem in video

    Sublinear Regret and Belief Complexity in Gaussian Process Bandits via Information Thresholding

    Full text link
    Bayesian optimization is a framework for global search via maximum a posteriori updates rather than simulated annealing, and has gained prominence for decision-making under uncertainty. In this work, we cast Bayesian optimization as a multi-armed bandit problem, where the payoff function is sampled from a Gaussian process (GP). Further, we focus on action selections via upper confidence bound (UCB) or expected improvement (EI) due to their prevalent use in practice. Prior works using GPs for bandits cannot allow the iteration horizon TT to be large, as the complexity of computing the posterior parameters scales cubically with the number of past observations. To circumvent this computational burden, we propose a simple statistical test: only incorporate an action into the GP posterior when its conditional entropy exceeds an ϵ\epsilon threshold. Doing so permits us to derive sublinear regret bounds of GP bandit algorithms up to factors depending on the compression parameter ϵ\epsilon for both discrete and continuous action sets. Moreover, the complexity of the GP posterior remains provably finite and depends on the Shannon capacity of the observation space. Experimentally, we observe state of the art accuracy and complexity tradeoffs for GP bandit algorithms applied to global optimization, suggesting the merits of compressed GPs in bandit settings
    corecore